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Abstract— We describe progress in the design, build and
test of a mechatronic system capable of visually tracking
objects at sea from a moving platform, such as a boat. The
mechanism comprises three controllable degrees of freedom
that can carry a small camera as payload. The camera
position is stabilised using inertial sensing, and the stabilised
images are processed using a published colour-based tracking
algorithm to achieve visual pursuit of the target [1], [3]. We
describe novel improvements to the tracker that enhance its
performance in the case of tracking a target at sea. The system
is demonstrated on real footage and its performance assessed.

Index Terms— Visual tracking, Active vision, Visual servo-
ing

I. INTRODUCTION

Keeping a fix on a target at sea can be demanding. It
is common practice in the marine community for a person
to keep pointing at a target so as not to lose it. The UK’s
Royal National Lifeboat Institution (RNLI) have used pan
tilt cameras mounted up the mast of a lifeboat to aid their
rescue missions but they still need to dedicate a full time
operator to keep the camera pointing at the target.

The problem on many occasions is the amount of motion
a boat will experience in even moderate seas. For example
+/- 45◦ at 40− 60◦/s would not be uncommon. If this mo-
tion is present without visual reference points such as other
vessels or landmarks, it can often become disorientating,
making it very tough for a person to successfully follow a
target.

The core contributions of the paper are two-fold: (i)
we describe novel improvements to published colour-based
tracking that have measurably better performance in our
application; (ii) we describe the integration of the algorithm
into a mechatronic system. The paper is organised as
follows: we begin with a description of the visual tracking
algorithm together with our improvements in section II,
then describe the full system in section III and present
results and evaluation from field-tests in section IV. We
conclude with a discussion of a number of areas for further
research.

II. VISUAL TRACKING ALGORITHM

The Bhattacharyya coefficient is a measure of similarity
between two probability distributions, defined for discrete
distributions as

ρ(p, q) =
∑

u

√
puqu (1)
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It can be used for visual tracking by modelling a target by
its colour histogram, q, and comparing it to the distribution
p(y) in an image window centered at pixel location y.
This representation has the virtue of conferring a degree of
invariance to deformations in shape. This property makes
it an attractive measure for problems, such as ours, where
the principal goal is simply repeated localisation to provide
an angular demand to a servo system.

Equation (1) is iteratively maximised from a starting
image location y0 to find the new image location. Co-
maniciu et al. [3] proposed that this maximisation could
be effectively and efficiently achieved using the mean shift
algorithm. This algorithm is based on the observation that
the mean of a set of samples from a probability density
function, in a window of finite support, will be biased
towards a local maximum of the density function.

Their derivation of this begins by linearising ρ about the
current histogram

ρ(p(y), q) ≈ 1
2

∑

u

√
pu(y0)qu +

1
2

∑

x

wxk(y, x) (2)

where
wx =

∑

u

δ[I(x)− n]
√
qu/pu(y0) (3)

and the summation over x is implicitly over all pixels
in a window, the summation of u is over all bins in the
histogram, and k is a kernel that weights pixels close to the
centre of the window more than at the edges (often taken
to be the Epanechnikov kernel which decreases linearly to
zero at the edge from 1 in the centre). The current estimate
of location is refined by replacing it with

y1 =
∑

x xwxk(x, y)∑
x wxk(x, y)

(4)

until successive moves fail to improve the objective by
more than a threshold.

In various circumstances of interest, however, a stan-
dard implementation of mean shift tracking using colour
histograms fails to track adequately. In particular, in the
following sections we introduce three simple changes that
improve the reliability in our application.

A. Using gradient information

Footage taken at sea often lacks good colour contrast,
but Comaniciu’s algorithm is not restricted to the use of
colour information. To augment the colour information,
we also compute histograms of image gradient magnitude,



where the image gradient is computed using standard finite-
difference approximations in x and y from the monochrome
image.

The sequences in figure 1 illustrate a typical scenario
where there is little colour contrast, and demonstrate that
the use of gradient information is beneficial.

Fig. 1. Tracking in low colour-contrast images: (left) using colour
histograms only; (right) using a combination of colour and gradient
histograms

B. Background suppression

Other authors (e.g. [4]) have also noted the problem
that a target that shares some colours with the background
can be difficult to track reliably. To address this problem
we have developed a method of background suppression,
which also provides a metric of target suitability with
respect to mean shift tracking.

Figure 2 shows how the target and background regions
are constructed. The inner ellipse of radius h represents
region where the values of the Epanechnikov kernel are
greater than zero. The background region is the immediate
neighbourhood of this target region out to a window radius
of h′, and we construct a colour/gradient histogram b for

Target
Region

Background
Region

h’ h

Fig. 2. Geometry of target and background models

all pixels in this neighbourhood. So that information over
time is not lost we also construct a cumulative histogram,
B defined such that

B(t) ∝ b(t) + λB(t− 1) (5)

where 0 < λ < 1 controls the amount of memory the
cumulative histogram has.

The algorithm proceeds as before but operating on image
and template histograms p∗ and q∗ obtained by suppressing
the influence of background colours:

q∗u = max(0, qu−µBu), p∗u(y) = max(0, pu(y)−µBu)
(6)

where 0 < µ < 1 is a parameter that controls the degree
of suppression.

Figure 3 shows a summary of the revised algorithm. It is
essentially the same as the standard mean-shift algorithm,
except that (i) it operates on histograms in which the
background has been suppressed; and (ii) at the end of each
iteration the background is updated according to equation
5 and the current level of suppression is computed as a
measure of target reliability.

Given the distribution of the target model, q, the previ-
ous cumulative background model B, and an estimate
of the location in the previous frame:

1) Compute q∗ the normalised template histogram
according to (6)

2) Compute p(y0) and p∗(y0) the normalised his-
togram (and background suppressed version) at
the current location estimate y0 (6)

3) Compute the Bhattacharyya coefficient
ρ(p∗(y0), q∗)

4) Compute a mean shift update for the new location
y1 (4) using weights

w(y, u) =
√
q∗u, p∗u(y)

5) Compute p(y1) and p∗(y1)
6) If ||y1 − y0|| < ε stop, else set y0 ← y1 and goto

step 2
7) Update B ← b+B and normalise.

Fig. 3. Modified mean shift algorithm



Fig. 4. (left) Tracking with background suppression active; (right) a
snapshot of the histograms from a frame in the sequence

C. Coping with occlusion

If the starting point for the optimisation is outside the
basin of attraction, then the target will be lost since the al-
gorithm will converge to an incorrect local maximum. This
also occurs regularly because of occlusion in the scene.
Both can be ameliorated by filtering image location over
time and providing predictions via a motion model (e.g.
Kalman Filtering), but ultimately some form of recovery
mechanism is required. Particle filtering techniques address
the problem of incorrect convergence since they have the
ability to represent a multi-model distribution over target
location, but pay a hefty computational price.

In order to obtain the ability to recover from failure,
but without the burden of a full particle filter, we sample
the Bhattacharyya surface at discrete locations on a regular
grid whose size is commensurate with the current scale
(see figure 5). This provides a coarse approximation to the
Bhattacharyya surface. Treating this as a likelihood, we
combine it with a prior to obtain a coarse posterior. Since
our prior is obtained from the prediction step in a Kalman
Filter, the posterior is simply the likelihood weighted by
a Gaussian centred on the prediction and with covariance
given by the filter’s prediction uncertainty.

The maximum in this coarse posterior is then chosen as
the starting point for iteration of the mean shift algorithm.
Figure 6 shows an example of this process in operation.
Note that the full Bhattacharyya surface is shown in the
figure for illustrative purposes only; during actual operation
we compute only the values at the discrete grid locations
to obtain a coarse sampling.

Fig. 5. The Bhattacharyya coefficient is evaluated at a set of discrete
locations determined by tiling the image with windows of the current
scale outwards from the current location

D. Scaling

Comaniciu’s original solution to the question of a target
changing scale over time was addressed via an ad-hoc test
that grew and shrunk the scale of the target region by±10%
and chose the scale that gave the best Bhattacharyya coef-
ficient. This method suffers from two significant problems:
(i) the target is prone to collapse on itself if its distribution
is relatively uniform; and (ii) the target window can explode
to encompass significant parts of the background unless the
background is significantly different.

Though Collins [2] provides an elegant solution via
scale-space, we have adopted a simpler method. It is still
based on Comaniciu’s original idea, but using our coarse
sampling of the Bhattacharyya surface to determine if
scale changes should be allowed. If the surface has low
curvature at the boundaries of the current target window,
this is suggestive that either the target has started to
collapse (and so parts of the full target are now considered
background and outside the target window) or that the
target is poorly distinguished from the background. We use
a simple measure defined as the difference between the
Bhattacharyya coefficient at the centre and the mean value
of the surrounding samples. If this difference falls below a
threshold scale changes are disabled. Figure 7 shows this
technique in action.

III. SYSTEM INTEGRATION

The visual tracking algorithm described in the previous
section has been fully integrated into a robotic system
incorporating 3 degrees of freedom (pan/tilt/roll), image
stabilisation, and visual tracking. The core components
of the system are the mechanism and camera, an em-
bedded PC running Linux for visual processing, a PIC
microcontroller running low-level control algorithms, and
an InertiaCube (TM) inertial sensor1. This latter device
provides relatively drift-free orientation data via fusion of
twice-integrated acceleration sensing, a compass and solid-
state gyros.

1InterSense InertiaCube2, Intersense Inc.



Fig. 6. Recovery from tracking failure: (left) shows typical behavior
of the unmodified algorithm in the presence of occlusions; (middle)
shows the recovery after complete occlusion using the coarsely sampled
Bhattacharyya surface; (right) the full Bhattacharyya surface for each
frame

Visual processing is performed on the embedded PC, and
visual demands are sent to the PIC microcontroller which
is responsible for acquiring visual and inertial sensor data,
and generating PWM signals for the servos.

The controller on the PIC comprises two main control
loops running at different frequencies. The first loop is
to stabilise the platform and runs at 50Hz. It polls the
InertiaCube for its current orientation and calculates the
inverse kinematics to stabilise the orientation of the cam-
era’s natural coordinate frame.

The second loop is fired from an interrupt every time
a new image frame arrives (30Hz or 25Hz depending on
the camera being used). This loop calls the current tracker
with the new frame where a prediction is made of the x,y
coordinates that correspond to the best guess of the current
target location. These coordinates are then subtracted from
the centre of the frame to give two error signals which drive
a non-linear controller. The outputs from this controller
then make relative changes to the signals produced from
the inverse kinematics.

The final demand signals are transmitted at 50Hz, from
the PC to the PIC microcontroller via a serial link. The PIC
microcontroller is continually reading the incoming serial
data and generates the corresponding PWM signals for the
actuators, thus moving the camera and closing the feedback
loop for the visual controller. The reason for choosing this

Fig. 7. Changing scale: (left) scaling up; (right) scaling down

design is so that the stabilisation and the vision controllers
can be kept independent from one another. This means that
it is then possible to operate the system with stabilisation
alone, vision alone, or both.

A. Visual Feedback

Design of the feedback control loop for vision proceeded
empirically. A straight proportional controller does not
support a high enough gain for a fast response without
becoming unstable, while a proportional controller with
derivative action improved matters but still provided in-
sufficient gain for tracking fast moving targets. Finally a
three stage controller with two proportional stages and a
constant saturated stage was implemented (see Figure 10).

B. Inertial Stabilisation

The InertiaCube provides three angular measurements
that describe its orientation in a global coordinate frame.
It is mounted on the mechanism platform, and therefore
provides the world to base-frame transformation. The base-
frame to tool-frame (i.e. platform to camera) transformation



Fig. 8. PTR Mechanism

Fig. 9. System overview

RPC is under control and we effectively want to keep the
world-frame to tool-frame transformation RWC constant.
Thus the set of angles required for stabilisation comes from

RPC = RWCR
�
WP

From the mechanism forward kinematics RPC =
Rz(ψ)Ry(φ)Rx(θ), so after some simple algebraic manip-
ulation we obtain

φ = arcsin(RPC(3, 1))
ψ = arctan(−RPC(3, 3)/RPC(3, 3))
θ = arctan(−RPC(2, 1)/RPC(1, 1)) (7)

See figure 11 for the final control algorithm.

IV. RESULTS

Testing was conducted both on a custom built pan/tilt/roll
device using small but high torque servos capable of
slew rates of up to 300 ◦/s, and a commercial pan/tilt
mechanism specifically designed to operate in a marine
environment (see figure 12). Figure 1 shows the use of
gradient information, Figure 4 background suppression,
Figure 7 scaling, and Figures 13, 14 the complete system
in action.

V. CONCLUSIONS

The problem of visual tracking at sea poses some
interesting questions which we have begun to investi-
gate through the use of an active camera platform and
a simple but effective colour based tracker. In order to
overcome some of the specific problems encountered in

Fig. 10. The piece-wise linear controller developed for visual feedback
control

At each control cycle:

1) Calculate δt, time elapsed since last update
2) Obtain RWP from InertiaCube
3) Evaluate RPC = RWCR

�
WP

4) Decompose RPC into pan (θ), tilt (φ) and roll (ψ)
using (7).

5) Find target in image and let xerr, yerr be the
demand in pixel coordinates

6) Compute pan and tilt demands:

θerr = arctan(xerr cosψ − yerr sinψ)
φerr = arctan(xerr sinψ + yerr cosψ)

7) Calculate θd, φd using the piecewise linear con-
troller shown in figure 10

Fig. 11. Control algorithm

visual imagery at sea we have proposed several simple
but effective modifications that improve the robustness of
tracking, and give a measure of confidence in our results.
We have demonstrated successful tracking in several scenes
including in the presence of unmodelled ego-motion which
is compensated by closed loop inertial feedback control.

We have not addressed the issue of automatic target
acquisition which would be crucial for search and res-
cue missions, and which raises a number of interesting
questions, such as how to detect a salient target in the
presence of constantly moving, textured background like
the sea. Equally target re-acquisition after a period of
occlusion (in rough water a target is likely to disappear

Fig. 12. Tests were performed using both (left) a simple custom built
pan/tilt/roll device and (right) a commercial pan/tilt mechanism (Mic1-300
from Forward Vision CCTV Ltd (www.fvcctv.co.uk))



Fig. 13. Stabilisation over a short video sequence: (left) stabilised image;
(right) view from a hand-held video camera, with superimposed lines to
illustrate motion

into troughs for periods) needs to be addressed. Though
our coarsely sampled Bhattacharyya surface provides an
effective solution in some cases, further research will look
at sensible motion models for typical search/rescue targets.
Moreover prolonged tracking would give the opportunity
to derive a much stronger appearance model of a target,
enhancing the prospects of correct re-acquisition.
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Fig. 14. Stabilisation and tracking over a 7 minute sequence


